Letters

The crystal structures of CeSiO₂N and LaSiO₂N

In a recent note in this journal [1], the X-ray powder diffraction pattern of " $3Ce_2O_3 \cdot 2Si_3N_4$ " was presented, with the conclusion that the substance was orthorhombic: a = 7.257 Å, b = 9.460 Å, c = 4.184 Å*. It is apparent that the substance is actually CeSiO₂N, pseudo-hexagonal with a =7.256 Å, c = 9.459 Å.

The crystal has the α -CaSiO₃ pseudo-wollastonite structure, as does YSiO₂N [2]. Earlier patterns in the La-Si-O-N system were published [3] which contain the compound LaSiO₂N mixed with other phases [2]. Table I gives the measured and calculated *d* values and intensities for this structure for both CeSiO₂N and LaSiO₂N. Table II gives the approximate atom positions used in the computer intensity calculation [4]. We note that in CeSiO₂N, cerium is trivalent. If cerium were tetravalent then, nominally, CeSiON₂ is possible with the same large cation:small cation:anion ratios.

TABLE I	I, Atom	positions	used in	1 intensity	calculation
---------	---------	-----------	---------	-------------	-------------

Ce(or La)	0		
	0.666.0.0	0.082	& 0.418
0, 0, 1/2	0.318 0	318,0.082	& 0.418
1/3 2/3 0	0.015 0	566 0.082	& 0.110
1/3, 2/3, 1/2	0.652 0	566 0 582	& 0.110
$\frac{1}{3}, \frac{2}{3}, \frac{3}{12}$	0.052, 0.0	318 0 582	& 0.019
2/3, 1/3, 0	0.000,0.	516, 0.562	e 0.010
2/3, 1/3, 1/2	0.549, 0.	515, 0.362	a 0.910
Si	N		
51	1.4		
0.666, 0.935, 0.250	0.666,	0.463,	0.250
0.666, 0.935, 0.250 0.398, 0.398, 0.250	0.666, 0.870,	0.463, 0.870,	0.250 0.250
0.666, 0.935, 0.250 0.398, 0.398, 0.250 0.935, 0.666, 0.250	0.666, 0.870, 0.463,	0.463, 0.870, 0.666,	0.250 0.250 0.250
0.666, 0.935, 0.250 0.398, 0.398, 0.250 0.935, 0.666, 0.250 0.732, 0.666, 0.750	0.666, 0.870, 0.463, 0.204,	0.463, 0.870, 0.666, 0.666,	0.250 0.250 0.250 0.750
0.666, 0.935, 0.250 0.398, 0.398, 0.250 0.935, 0.666, 0.250 0.732, 0.666, 0.750 0.000, 0.398, 0.750	0.666, 0.870, 0.463, 0.204, 0.000,	0.463, 0.870, 0.666, 0.666, 0.870,	0.250 0.250 0.250 0.750 0.750

Thus a solid solution, $\operatorname{Ce}_{1-x}^{3+}\operatorname{Ce}_{x}^{4+}\operatorname{SiO}_{2-x}\operatorname{N}_{1+x}$, may occur. In $\operatorname{CeSiO}_2\operatorname{N}$ the bond strength (Pauling's second crystal rule) arriving at nitrogen is 2–3/4, at oxygen 2–1/8[2]. In "CeSiON₂" half of the nitrogens would receive a bond strength of 3 while the other half would receive 2–1/2, as would oxygen. This would be a more unstable condition so that the range of x is probably quite small.

TABLE I									
LaSiO ₂ N				CeSiO ₂ N					
hkl		d _c	$I_0[3]$	Ic	hkl	d _o	d _e	I ₀ [1]	I _c
002	4.81	4.78	17	37	002	4.733	4.729	27	37
110	3.65	3.655	84	62	110	3.630	3.628	79	63
111	3.41	3.413	14	10	111	3.383	3.387	11	10
112	2.90	2.902	100	100	112	2.882	2.879	100	100
004	2.381	2.388	18	14	004	2.366	2.365	17	14
0 30	2.110	2.110	43	37	030	2.094	2.094	39	37
114	1.996	1.999	31	35	114	1.981	1.981	26	35
032	1.928	1.930	30	32	032	1.915	1.915	26	32
220	1.826	1.827	15	9	220	1.814	1.814	15	10
222	1.708	1.707	15	21	222	1.695	1.694	12	21
034	1.584	1.581	8	. 17	034	1.564	1.568	10	17
116 224	1.447	{ 1.459 1.451	14	17 12	116 224	1.442	$\left\{\begin{array}{c}1.445\\1.439\end{array}\right\}$	18	{ 17 12
	,			•	140	1.370	` 1.371 `	8	8
					142	1.317	1.317	14	19
pseudo-hexagonal $R = 0.25$ a = 7.31 Å c = 9.55 Å				pseudo-hexagonal $R = 0.21$ a = 7.256 Å c = 9.459 Å					

* These axes are, in fact, orthonexagonal with $a = \sqrt{3c}$

References

- R. R. WILLS and J. A. CUNNINGHAM, J. Mater. Sci. 12 (1977) 208.
- P. E. D. MORGAN, P. J. CARROLL and F. F. LANGE, Mat. Res. Bull. 12 (1977) 251.
- R. R. WILLS, R. W. STEWART, J. A. CUNNINGHAM and J. M. WIMMER, J. Mater. Sci. 11 (1976) 749.
- K. YVON, W. JEITSCHKO and E. PARTHE, Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia (1969).

Comments on "Silicon cerium oxynitride"

Wills and Cunningham [1] report the existence of a new phase in the silicon-cerium-oxygennitrogen system obtained by reacting together 3:1molecular proportions of CeO₂ and Si₃N₄ at 1550° C. They indexed the X-ray diffraction pattern of this phase on the basis of an orthorhombic cell with dimensions

$$a = 7.257, b = 9.460, c = 4.184 \text{ Å},$$

but were unable to correlate it with any known silicate crystal structure.

Two points are apparent from the indexing proposed by Wills and Cunningham. Firstly the sum of h and l indices for each line is even (except for 3 1 2 which has the alternative indexing 3 4 1); and secondly, the a/c ratio (1.734) is exactly $\sqrt{3}$. These observations show that the pattern can be reindexed on a simpler hexagonal cell with

$$a_{\rm H} = b_{\rm H} = c_{\rm O} = 4.184 \,\text{\AA},$$

 $c_{\rm H} = b_{\rm O} = 9.460 \,\text{\AA}$

Received and accepted 2 February 1977. P. E. D. MORGAN Metallurgy and Materials Engineering, University of Pittsburgh, USA P. J. CARROLL Department of Chemistry, Temple University Philadelphia, USA

where H and O refer to hexagonal and orthorhombic respectively.

When indexed in this way (Table I) the unit cell is similar to those of the rare-earth borates [2, 3]and aluminates [4] and can be related to the group of 3-membered ring silicates [5, 6]. All these structures have a characteristic formula of the type ABO_3 , where A is a rare-earth metal and B is a small network-forming cation (B, Al, Si). It is noteworthy that the formula proposed by Wills and Cunningham [1], $3Ce_2O_3 \cdot 2Si_3N_4$ or $SeCeO_{1,5}N_{1,33}$ which was derived on the assumption that oxygen was the non-metallic species lost during the $Ce^{IV} \rightarrow Ce^{III}$ transformation reduces to an AB(O, N)₃-type formula, CeSiO₂N, if nitrogen is lost in place of oxygen. This is in fact extremely likely in these type of reactions.

A similar compound, $YSiO_2N$, has recently been reported by Rae [7] and Lange *et al.* [8]. This compound has the structure of α -wollastonite (3-membered rings) with a monoclinic unit cell related to a simpler hexagonal pseudocell of dimensions

TABLE I Alternative indexing of the diffraction pattern for " $3Ce_2O_3 \cdot 2Si_3N_4$ "

d _{obs}	I _{obs}	d _{calc}	h k l _{W&C}	h k l _{DPT}
4.733	27	4.730	020	002
3.630	79	3.628	101,200	100
3.383	11	3.387	111,210	101
2.882	100	2.879	121,220	102
2.366	17	2.365	040	004
2.094	39	2.095	002,301	110
1.981	26	1.981	141,240	104
1.915	26	1.915	022,321	112
1.814	15	1.814	202,400	200
1.695	12	1.694	222,420	202
1.573	7	1.572	232,430	203
1.564	10	1.568	312,341	114
1.442	18	1.446, 1.439	440,260,161	106,204
1.370	8	1.371	103,402,501	210
1.317	14	1.317	123,422,521	212

Orthorhombic: a = 7.257, b = 9.460, c = 4.184 Å. Hexagonal: a = 4.189, c = 9.460 Å.